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The Fourier basis: The mother of all representation systems

Consider Fourier basis (en)n∈Zd :=
(
e2π i〈n,•〉)

n∈Zd on the torus Td = Rd/Zd .

Nice properties:
Fourier basis is an orthonormal basis for L2 (Td ).
Smooth functions are sparse in the Fourier basis.

For example: If g ∈ C k
(
Td
)
, then (ĝ (n))n∈Zd ∈ `p

(
Zd
)
for p > 2d

d+2k .

Fourier basis diagonalizes translation invariant operators.

But:
The coefficients ĝ (n) = 〈g , en〉 are non-local.
 If g is discontinuous at a single point, then (ĝ (n))n∈Zd /∈ `1

(
Zd
)
.

For the Fourier transform on Rd :

I The index set of (e2π i〈ξ ,•〉)
ξ∈Rd is uncountable.

I We have e2π i〈ξ ,•〉 /∈ Lp
(
Rd
)
for ξ ∈ Rd and p < ∞.

I The coefficients ĝ (ξ ) = 〈g , e2π i〈ξ ,•〉〉 depend non-locally on g .
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A wish list for representation systems

Φ = (ϕi )i∈I should be a frame for Hilbert space H, i.e.:
1 f ∈H can be stably recovered from the analysis coefficients (〈f , ϕi 〉)i∈I .
2 The synthesis map

SΦ : `2 (I )→H, (ci )i∈I 7→∑
i∈I

ci ·ϕi

is bounded and surjective.
Note: Each of these prop. equivalent to ‖f ‖2H � ∑i∈I |〈f ,ϕi 〉|2 for all f ∈H.

Φ should yield sparse representations for a function class C of interest.
1 Analysis sparsity means (〈f , ϕi 〉)i∈I ∈ `p (I ).
2 Synthesis sparsity means f = ∑i∈I ciϕi with (ci )i∈I ∈ `p (I ).

Φ should be “compatible” with a class of operators of interest
(e.g.: operators in the class preserve sparsity w.r.t. Φ).

Characterization of function spaces using the coefficients (〈f ,ϕi 〉)i∈I .
Φ should be efficiently implementable.
Φ should be useful feature extractor (e.g. for edge detection).

F. Voigtlaender Sparsity properties of frames via decomposition spaces PDE and Harmonic Analysis Seminar, Bonn 5 / 20



Example 1: Gabor frames
Given a prototype γ ∈ L2

(
Rd
)
and sampling densities a,b > 0, the associated

Gabor system is

G(γ;a,b) :=
{

γ
[n,k;a,b] := Lbk [Man γ] = e2π i〈an,•−bk〉 · γ (•−bk) : n,k ∈ Zd

}
.

Illustration:

F. Voigtlaender Sparsity properties of frames via decomposition spaces PDE and Harmonic Analysis Seminar, Bonn 6 / 20



Example 1: Gabor frames
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(
Rd
)
and sampling densities a,b > 0, the associated

Gabor system is

G(γ;a,b) :=
{

γ
[n,k;a,b] := Lbk [Man γ] = e2π i〈an,•−bk〉 · γ (•−bk) : n,k ∈ Zd

}
.

Applications:

Feature extraction: Gabor transform ≈ score sheet

Gabor frames characterize modulation spaces, used to study ΨDOs.

Frequency concentration: If supp γ̂ ⊂ Q, then supp F γ
[n,k;a,b] ⊂ Q +an.

or
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Example 2: Wavelet frames
Given low-pass filter ϕ ∈ L2

(
Rd
)
, mother wavelet γ ∈ L2

(
Rd
)
, and sampling

density δ > 0, the associated wavelet system is

W(ϕ,γ;δ ) :=
{

γ
[−1,k;δ ] := Lδkϕ : k ∈ Zd

}
∪
{

γ
[j ,k;δ ] := 2jd/2 · γ (2j •−δk) : j ∈ N0,k ∈ Zd

}
.

Illustration:
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Example 2: Wavelet frames
Given low-pass filter ϕ ∈ L2

(
Rd
)
, mother wavelet γ ∈ L2

(
Rd
)
, and sampling

density δ > 0, the associated wavelet system is

W(ϕ,γ;δ ) :=
{

γ
[−1,k;δ ] := Lδkϕ : k ∈ Zd

}
∪
{

γ
[j ,k;δ ] := 2jd/2 · γ (2j •−δk) : j ∈ N0,k ∈ Zd

}
.

Applications:
Feature extraction: Wavelet transform can detect singularities of functions.
Sparsity: Piecewise smooth functions have sparse wavelet transform.
Wavelet frames characterize Besov spaces and Triebel-Lizorkin spaces, used
to study Calderon-Zygmund operators.

Frequency concentration:
If supp γ̂ ⊂ Q, then supp F γ

[j ,k;δ ] ⊂ 2jQ for j ∈ N0.
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Example 3: Shearlet frames
Given low-pass filter ϕ, mother shearlet γ, and sampling density δ > 0, the
associated cone-adapted shearlet system is

SH(ϕ,γ;δ ) :=
{

γ
[−1,k;δ ] := Lδkϕ : k ∈ Z2

}
∪
{

γ
[i ,k;δ ] := |detTi |1/2 · γ (TT

i •−δk) : i ∈ I0, k ∈ Z2
}

with I0 :=
{

(j , `, ι) ∈ N0×Z×{0,1} : |`| ≤
⌈
2j/2

⌉}
and

Tj ,`,ι = R ι ·Pj ·S` with R =

(
0 1
1 0

)
, Pj =

(
2j 0
0 2j/2

)
, S` =

(
1 0
` 1

)
.

Illustration (images courtesy of Philipp Petersen)
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Example 3: Shearlet frames
Given low-pass filter ϕ, mother shearlet γ, and sampling density δ > 0, the
associated cone-adapted shearlet system is

SH(ϕ,γ;δ ) :=
{

γ
[−1,k;δ ] := Lδkϕ : k ∈ Z2

}
∪
{

γ
[i ,k;δ ] := |detTi |1/2 · γ (TT

i •−δk) : i ∈ I0, k ∈ Z2
}
.

Applications:
Feature extraction: Decay of shearlet transform characterizes wavefront set.
Sparsity: The shearlet coefficients of cartoon-like functions are sparse.

What kind of spaces are characterised by shearlets? What kinds of operators
can be understood using shearlets?
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SH(ϕ,γ;δ ) :=
{

γ
[−1,k;δ ] := Lδkϕ : k ∈ Z2

}
∪
{

γ
[i ,k;δ ] := |detTi |1/2 · γ (TT

i •−δk) : i ∈ I0, k ∈ Z2
}
.

Applications:
Feature extraction: Decay of shearlet transform characterizes wavefront set.
Sparsity: The shearlet coefficients of cartoon-like functions are sparse.
What kind of spaces are characterised by shearlets? What kinds of operators
can be understood using shearlets?

Frequency concentration:

Q
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Structured systems
A structured system is of the form Γ(δ ) =

(
γ

[i ,k;δ ]
)
i∈I ,k∈Zd with

γ
[i ,k;δ ] = |detTi |

1
2 ·L

δ ·T−Ti
·k

[
M

bi

(
γ ◦ TT

i

)]
for some prototype γ and a family of affine maps ( Ti •+ bi )i∈I .

Note: All of the considered systems are (more of less) of this form!

Frequency concentration of structured system: γ
[i ] := γ

[i ,0;δ ] satisfies

F γ
[i ] = |detTi |−1/2 ·Lbi

(
γ̂ ◦T−1

i

)
.

If γ̂ is concentrated in Q ⊂ Rd , then F γ
[i ] is concentrated in Qi := TiQ +bi .

 Q = (Qi )i∈I is the structured covering associated to the structured system.

Goal: Find family of Banach spaces D
(
Q,Lp, `qw

)
, parametrized by p,q,w , so that

f ∈D(Q,Lp, `qw ) ⇐⇒ f sparse with respect to Γ(δ ).
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Decomposition spaces
Consider structured admissible covering Q = (Qi )i∈I of Rd . This means:

There is a fixed open, bounded base set Q ⊂ Rd with

Qi = TiQ +bi ∀i ∈ I ,

|i∗| ≤ N for all i ∈ I , with i∗ := {` ∈ I : Q`∩Qi 6= ∅},
additional technical conditions (almost always satisfied in practice).

Choose a regular partition of unity Φ = (ϕi )i∈I subordinate to Q.
ϕi ∈ C∞

c (Qi ), ∑i∈I ϕi ≡ 1 and some other technical condition.

Choose a Q-moderate weight w = (wi )i∈I , i.e., wi ≤ C ·wj if Qi ∩Qj 6= ∅.

For p,q ∈ (0,∞], and g ∈ R, define the decomposition space (quasi)-norm

‖g‖D(Q,Lp ,`qw) :=
∥∥∥(wi ·

∥∥F−1 (ϕi · ĝ)
∥∥
Lp

)
i∈I

∥∥∥
`q
∈ [0,∞] .

The decomposition space determined by Q,p,q,w is

D(Q,Lp, `qw ) :=
{
g ∈ R : ‖g‖D(Q,Lp ,`qw) < ∞

}
.

Here R is a suitable reservoir of distributions (think: R = S′ (Rd )).
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Banach frames and atomic decompositions

(ϕi )i∈I ⊂ X ′ is a Banach frame for the B-space X , with coeff. space Yd ≤ CI if
1 Yd is solid.
2 The analysis operator

A : X → Yd ,x 7→ (〈x ,ϕi 〉)i∈I
is well-defined and bounded.

3 There is a bounded reconstruction operator R : Yd → X with R ◦A = idX .

(ϕi )i∈I ⊂ X is an atomic decomposition for X , with coeff. space Yd ≤ CI if
1 Yd is solid.
2 The synthesis operator

S : Yd → X ,(ci )i∈I 7→∑
i∈I

ci ·ϕi

is well-defined and bounded (convergence in suitable topology).
3 There is a bounded coefficient operator C : X → Yd with S ◦C = idX .
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Structured Banach frame decompositions: General questions

Hope: If γ is nice, then Γ(δ ) =
(
γ

[i ,k;δ ]
)
i∈I ,k∈Zd is a BFD for D

(
Q,Lp, `qw

)
, where

γ
[i ,k;δ ] = |detTi |

1
2 ·L

δ ·T−Ti k

[
Mbi

(
γ ◦TT

i

)]
.

Question: What is the associated sequence space Cp,q
w ≤ CI×Zd

?

Answer: Cp,q
w =

{
c ∈ CI×Zd

: ‖c‖Cp,q
w

< ∞

}
, where∥∥∥(c

(i)
k )i∈I ,k∈Zd

∥∥∥
Cp,q
w

=
∥∥∥(|detTi |

1
2−

1
p ·wi ·

∥∥(c
(i)
k )k∈Zd

∥∥
`p

)
i∈I

∥∥∥
`q

.

Question: In what sense does γ have to be “nice”?

Note: Even for characterizing L2, the required “niceness” depends heavily on Q:

For Gabor systems: Sufficient if γ belongs to the Wiener space.
For wavelets, γ has to have vanishing moments.
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Structured Banach frames — The theorem

Theorem (FV; 2016)
Let w = (wi )i∈I be Q-moderate and let p,q ∈ (0,∞].
There are N ∈ N and σ ,τ > 0 (only dep. on p,q,d) with the following property:

If γ ∈ C 1
c

(
Rd
)
,

γ̂ (ξ ) 6= 0 for all ξ ∈ Q,
and if

sup
i∈I

∑
j∈I

Mj ,i < ∞ and sup
j∈I

∑
i∈I

Mj ,i < ∞,

with

Mj ,i :=

(
wj

wi

)τ

· (1+‖T−1
j Ti‖)σ ·

(
−
∫
Qi

max
|α|≤N
|β |≤1

∣∣∣[∂ α
∂̂ β γ ]

(
T−1
j (ξ −bj )

)∣∣∣dξ

)τ

,

then there is δ0 > 0, such that:

For 0< δ ≤ δ0, the family
(
L

δ ·T−Ti k
γ̃ [i ]
)
i ,k

is Banach frame for D(Q,Lp, `qw )

with coefficient space Cp,q
w . Here: g̃ (x) = g (−x).
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Structured atomic decompositions

Theorem (FV; 2016)
Under similar conditions on γ as before, there is δ0 > 0 such that:

For 0< δ ≤ δ0, the family Γ(δ ) = (γ
[i ,k;δ ] )i ,k is an a.d. of D(Q,Lp, `qw )

with coefficient space Cp,q
w .

Observation: For wi = |detTi |
1
p−

1
2 , we have Cp,p

w = `p
(
I ×Zd

)
.

Thus: For 0< p ≤ 2, for sufficiently nice γ, and δ > 0 small, we have

D(Q,Lp, `pw ) =

{
f ∈ L2 (Rd ) :

(〈
f , γ

[i ,k;δ ,∗]〉)
i∈I ,k∈Zd

∈ `p (I ×Zd )

}
=

{
∑
i ,k

c
(i)
k · γ

[i ,k;δ ] : (c
(i)
k )i∈I ,k∈Zd ∈ `p (I ×Zd )

}
,

with Q = (TiQ +bi )i∈I and γ
[i ] = |detTi |

1
2 ·Mbi

[
γ ◦TT

i

]
, as well as

γ
[i ,k;δ ] = L

δ ·T−Ti k
γ

[i ] and γ
[i ,k;δ ,∗] = L

δ ·T−Ti k
γ̃ [i ] .
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New proofs of classical results

Corollary
For Besov spaces Bp,q

s

(
Rd
)
:

Structured system  Wavelet system.
“Horrible condition”  smoothness + localization + vanishing moments.
Precisely: Suffices to have

|∂ α
γ̂ (ξ )|. (1+ |ξ |)−L1 ·min

{
1, |ξ |L2

}
for |α| ≤

⌈
d + ε

min{1,p}

⌉
,

with L2 ≥ 0 and
I L2 > s to get Banach frames,
I L2 >

(
p−1−1

)
+
·d − s to get atomic decompositions.

Corollary
For modulation spaces Mp,q

s

(
Rd
)
:

Structured system: Gabor system.
“Horrible condition”  smoothness + localization.
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Shearlet smoothness spaces

This is joint work with Anne Pein



Shearlet smoothness spaces
The shearlet covering
S = (TiQ +bi )i∈I :

Q

The spaces S p,q
s

(
R2
)

= D(S,Lp, `qw s ) are called
shearlet smoothness spaces (Labate, Mantovani, Negi; 2013).
The weight w is chosen such that wi ∼ 1+ |ξ | for ξ ∈Qi .

Observation: Structured family generated by ψ is a
cone-adapted shearlet system (Guo, Labate, Kutyniok; 2006):

Ψ(δ ) :=
(

ψ
[i ,k;δ ]

)
i∈I ,k∈Z2

= SH
(
Mb0(ψ ◦TT

0 ) , ψ; δ
)
.

Theorem (Pein, FV; 2017)

Let p0,q0 ∈ (0,1] and s0 ≥ 0. There are N1,N2 ∈ N such that if ψ1,ψ2 ∈ CN1
c (R)

and ψ = ψ1⊗ψ2 with

ψ̂ (ξ ) 6= 0 for ξ ∈ Q and
d`

dξ `

∣∣∣∣
ξ =0

ψ̂1 (ξ ) = 0 for ` = 0, . . . ,N2

then there is δ0 > 0, such that Ψ(δ ) is a Banach frame and an atomic
decomposition for S p,q

s

(
R2
)
for all p ≥ p0, q ≥ q0, |s| ≤ s0, and 0< δ ≤ δ0.



Application: Approximation of cartoon-like functions
We consider C 2 cartoon-like functions f ∈ E2:

(image courtesy of Gitta Kutyniok)

Previously known (Guo, Labate, Lim, Kutyniok et al.): If ψ is a nice mother shearlet, then

the analysis coefficients of f w.r.t. SH(ψ;δ ) are `p-summable for p > 2
3 .

For suitable linear combination fN of N elements of the dual shearlet frame:

‖f − fN‖L2 ≤ Cδ ,ψ ·N−1 · (1+ lnN)3/2 .

New result (Pein, FV; 2017)
For suitable linear comb. gN of N elements of the shearlet frame SH(ψ;δ ):

‖f −gN‖L2 ≤ Cε,δ ,ψ ·N−(1−ε) ∀ε ∈ (0,1) and N ∈ N.
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Conclusion
General framework:

Frame construction ←→ Frequency covering ←→ Decomposition space
Membership f ∈D

(
Q,Lp, `qw

)
⇐⇒ Sparsity of f w.r.t. given frame.

Special cases:
We recover known results about wavelet and Gabor frames.
Novel results for cone-adapted shearlets.

Story for another day:
Embedding theory for decomposition spaces.
 (Non)-transference of sparsity from one system to another.

Future work:
Study operators on decomposition spaces.
Try to find “intrinsic” characterizations of decomposition spaces
(e.g.: characterization of Besov spaces using moduli of continuity).
Extend framework to the case of Triebel-Lizorkin type spaces.
Study decomposition spaces on (bounded) domains.
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Thank you!
Questions, comments, counterexamples?

,



Atomic decompositions: “Similar conditions”?!

Theorem (FV; 2016)
Let w = (wi )i∈I be Q-moderate, and let p,q ∈ (0,∞].

There are N ∈ N and σ ,τ > 0 and ϑ ≥ 0 (only dep. on p,q,d) with the following:

Assume
γ = γ

(1) ∗ γ
(2) with γ

(1) ∈ Cc

(
Rd
)
and γ

(2) ∈ C 1
c

(
Rd
)
,

γ̂ 6= 0 on Q,
we have supi∈I ∑j∈I Ni ,j < ∞ and supj∈I ∑i∈I Ni ,j < ∞, with

Ni ,j :=

(
wi |Tj |ϑ

wj |Ti |ϑ

)τ

· (1+‖T−1
j Ti‖)σ ·

(
−
∫
Qi

max
|α|≤N

∣∣∣[∂ α
γ̂(1)
]
(T−1

j (ξ −bj ))
∣∣∣dξ

)τ

.

Then there is δ0 > 0 such that

For 0< δ ≤ δ0, the family Γ(δ ) = (γ
[i ,k;δ ] )i ,k is an a.d. of D(Q,Lp, `qw )

with coefficient space Cp,q
w .
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