
Optimal approximation
of piecewise smooth functions

using deep ReLU neural networks

Felix Voigtlaender

This is joint work with Philipp Petersen (also TU Berlin)

(I even stole some of his slides...)

Technische Universität Berlin
Institut für Mathematik

Seminar “Mathematics of Computation”, Bonn
23. November 2017

Applied Functional Analysis Group
Technische Universität Berlin

Neural Networks and what they can do for you

A neural network is determined by the following:

I Dimension of input layer: d = N0 ∈ N,

I Number of layers: L ∈ N,

I Activation function: % : R→ R,

I Affine-linear maps W` : RN`−1 → RN` , x 7→ A` x + b`, ` = 1, . . . , L.

The function Φ : Rd → RNL computed by the network is

Φ(x) = WL(%(WL−1(%(. . . %(W1(x)) . . .)))), x ∈ Rd .

Note: In the last layer, we do not apply %!

In the following: mainly consider ReLU activation function %(x) = x+.
1 / 31

Neural Networks and what they can do for you
Deep Learning: Efficient training of large multi-layered neural networks:

I Very competitive in classification (and other) tasks
I DNN often yield better generalization than other methods
I Little theory explaining this success

Examples:

I Image classification
(ImageNet)

I Game intelligence (AlphaGo)

I Self driving cars
(Tesla Autopilot)

2 / 31

Why does Deep Learning work?
Usual setting of deep learning:
I Unknown ground truth: Function F (e.g., image classifier).
I Only known: Samples (Xi ,F (Xi)).
I Using stochastic gradient descent, find network Φ that (more or

less) minimizes N∑
i=1

|Φ(Xi)− F (Xi)|2 .

Hope: Φ generalizes, i.e., Φ(X) ≈ F (X) also for X 6= Xi .

Why does this work so well? Three main aspects (Poggio et al.):

I Power of the architecture,
I Efficiency of stochastic gradient descent,
I Surprisingly good generalization.

Power of architecture: Given f from some class of functions.

1. Is there a network Φ that implements (or approximates) f ?
2. How complex does Φ need to be?

 Approximation properties of neural networks.
3 / 31

Function classes of interest

A crucial task of deep learning is to learn classifiers, e.g., classification
of hand-written digits:

A model for these functions is:

f : RN×N → {0, 1, . . . , 9}.

These are piecewise constant functions.

4 / 31

Function classes of interest

Example: A classifier function according to our model:
f : [−1/2, 1/2]2 → {0, 1, 2, 3, 4, 5}:

x1

x2

01

2
3

4

5

Note: In applications, the input dimensions are much larger.

5 / 31

A caveat

Our interpretation: A classifier is a function taking only finitely many
values.

Another interpretation: A classifier function is (an estimate for) the
conditional probability P(i | x) that input x belongs to class i .

Depending on the probability distribution, this can yield smooth functions
as a model for a good classifier.

Depending on the application, both interpretations can be appropriate.

6 / 31

Deep versus shallow networks

A network is deep if it has many layers.

Observation: In applications, deep networks perform much better than
shallow networks.

Approximation theory:

I Do deep networks provide provably better approximations than
shallow networks?

I What about our specific class of classifier functions?

7 / 31

Complexity and closure properties

of the class of ReLU networks

7 / 31

Complexity of neural networks
The affine linear mapping W` is defined by a matrix A` ∈ RN`×N`−1 and

a translation b` ∈ RN` via W`(x) = A` x + b`.

The number of weights of a network Φ is

M(Φ) =
∑
j≤L

(‖Aj‖`0 + ‖bj‖`0).

This is our notion of the complexity of a network.
8 / 31

The calculus of ReLU networks, Slide I
Producing identity: Since x = %(x)− %(−x), we can reproduce the
identity with a ReLU network Φid : Rd → Rd having L layers and
O(L · d) weights.

x
x+

x-

x+ x+

x- x-

x+x+x+ x++

x- x-x

x...
Composition: Let Φ1 : Rd → Rd ′ ,Φ2 : Rd ′ → Rd ′′ be two networks
with L1 and L2 layers and M1,M2 weights. Then Φ1 ◦ Φ2 can be realized
by a ReLU network with L1 + L2 layers and O(M1 + M2 + d ′) weights.

Increasing the depth: If Φ1 : Rd → Rd ′ has L1 layers and M1 weights,
then, for every L2 > L1 there is a network Φ2 with L2 layers and
M1 +O((L2 − L1) · d ′) weights with Φ1(x) = Φ2(x) for all x ∈ Rd .

9 / 31

The calculus of ReLU networks, Slide II
Cartesian product of two networks: If Φ1 : Rd → Rd ′ has L1 layers
and M1 weights, and Φ2 : Rd → Rd ′′ has L2 layers and M2 weights, then
there exists Φ3 : Rd → Rd ′+d ′′ with max{L1, L2} layers and
M1 + M2 +O ((d ′ + d ′′) · |L1 − L2|) weights such that

Φ3(x) = (Φ1(x),Φ2(x)) ∀ x ∈ Rd .

 The class of ReLU networks is closed under linear combinations,
and the complexity of the linear combination can be controlled. 10 / 31

Approximation with neural
networks

10 / 31

Approximation with neural networks is easy

We have the universal approximation theorem:

Theorem (Cybenko; 1989, Hornik; 1991, Pinkus; 1999)

Let K ⊂ Rd compact, f : K → R continuous, % : R→ R continuous and
not a polynomial.

For each ε > 0, there exist N ∈ N, ak , bk ∈ R,wk ∈ Rd :∥∥∥∥∥f −
N∑

k=1

ak · %(〈wk , •〉 − bk)

∥∥∥∥∥
L∞

≤ ε.

 Neural networks with two layers can approximate any continuous
function on a compact set arbitrarily well.

11 / 31

Approximation with neural networks is easy — Or is it?!

Universal approximation theorem:
Every continuous function can be approximated up to an error of ε > 0
using a two-layer neural network with N neurons.

 No information on the connection between ε and N!

Goal for today:

Derive upper and lower bounds on the complexity of ReLU networks for
approximating classifier functions.

12 / 31

Classifier functions
Model: A classifier function of regularity β > 0 is of the form

f =
n∑

i=1

ai · 1Bi
,

where ai ∈ R and Bi ⊂ Rd with ∂Bi ∈ Cβ for i ∈ {1, . . . , n}.

Note: Class of ReLU networks of a certain complexity (up to constant
factors) closed under linear combinations.

=⇒ Need only study approximation of f = 1B .

4

5

3

2

1 0

1

0.8

0.6

0.4

0.2

0
0

0.2
0.4

0.6
0.8

1

0.5

1

0

13 / 31

Roadmap for approximation
To approximate classifier functions, we proceed in four steps:

1 Jumps along straight lines:

2 Smooth functions:

3 Horizon functions:

4 Classifier functions:

1

0.8

0.6

0.4

0.2

0
0

0.2

0.4

0.6

0.8

1

0

0.5

1

1

0.8

0.6

0.4

0.2

00

0.2

0.4

0.6

0.8

1

1

0

-1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

0

0.5

1

1

1

0.8

0.6

0.4

0.2

0
0

0.2
0.4

0.6
0.8

1

0.5

1

0

14 / 31

Jumps along straight lines

Lemma (Petersen, V.; 2017)

Let H := 1[0,∞)×Rd−1 . For every ε > 0 there exists a ReLU network ΦH
ε ,

with two layers, and five weights, such that

‖H − ΦH
ε ‖L2([− 1

2
, 1

2
]d) ≤ ε.

Furthermore, |H(x)− ΦH
ε (x)| ≤ 10≤x1≤ε2 .

Construction: ΦH
ε (x) = %(x1/ε

2)− %(x1/ε
2 − 1).

15 / 31

Approximation of smooth functions — The function class

For β,B > 0, let

Fβ,d ,B :=
{
f ∈ Cn([−1/2, 1/2]d) : ‖f ‖Cβ ≤ B <∞

}
,

where for β = n + σ, n ∈ N0, σ ∈ (0, 1]

‖f ‖Cβ := max

{
max
|α|≤n

‖∂αf ‖sup, max
|α|=n

sup
x 6=y

|∂αf (x)− ∂αf (y)|
|x − y |σ

}
.

Note: F1,d ,B * C 1!

16 / 31

Approximation of smooth functions — Existing results

Theorem (Yarotsky; 2016)

For any f ∈ Fn,d ,1 and ε ∈ (0, 1), there is a ReLU network Φf
ε that

I satisfies ‖f − Φf
ε‖L∞ ≤ ε,

I has at most c · ε−d/n · (log2(1/ε) + 1) nonzero weights and neurons,

I has depth at most c · (log2(1/ε) + 1),

with c = c(d , n).

Comments:

I The error is measured with respect to the L∞ norm.

I The depth of Φf
ε depends on ε.

Proof:

1 Implement (approximate) multiplication.

2 Implement (approximate) Taylor polynomials and part. of unity.

The approximate multiplication needs log2(1/ε) layers.
17 / 31

Approximation of smooth functions — L2-approximation

Theorem (Petersen, V.; 2017)

There are c ′ > 0 and c = c(d , β,B) > 0, such that for any function
f ∈ Fβ,d ,B and any ε ∈ (0, 1/2), there is a ReLU network Φf

ε that

I satisfies ‖Φf
ε − f ‖L2([−1/2,1/2]d) < ε,

I has at most c · ε−d/β nonzero weights,

I has at most c ′ · (1 + d−1β) · log2(2 + β) layers.

Comments:

I Depth of Φf
ε independent of ε; it only depends on β, d .

I Proof:

I Again: Taylor polynomials and partition of unity,

I But: Use multiplication operator with depth independent of ε.

18 / 31

Approximation of Horizon functions — The function class

Let d ∈ N≥2, and β,B > 0. The class of horizon functions with
parameters β, d ,B is

HFβ,d ,B :=
{
1xi≥γ(x1,...,x̂i ,...,xd) : γ ∈ Fβ,d−1,B and i ∈ {1, . . . , d}

}
=
{
f ◦ T : f (x) = H(x1 − γ(x2, . . . , xd), x2, . . . , xd),

γ ∈ Fβ,d−1,B ,T ∈ Perm(Rd)
}

⊂ L∞
(
[−1/2, 1/2]d

)
,

where H := 1[0,∞)×Rd−1 is the Heaviside function.

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

0

0.5

1

1

19 / 31

Approximation of horizon functions — The theorem

Lemma (Petersen, V.; 2017)

There are c ′ > 0 and c = c(d , β,B) > 0, such that for any f ∈ HFβ,d ,B
and any ε ∈ (0, 1/2), there is a ReLU network Φf

ε that

I satisfies ‖Φf
ε − f ‖L2([−1/2,1/2]d) < ε,

I has at most c · ε−2(d−1)/β nonzero weights,

I has at most c ′ · (1 + d−1β) · log2(β) layers.

Comments:

I The necessary depth depends on d , β, but not on ε.

I The size of Φf
ε approximating f ∈ HFβ,d ,B is ε−2(d−1)/β , compared

to ε−d/β for f ∈ Fβ,d ,B .

20 / 31

Sets with smooth boundary
Sets with smooth boundaries are those that are locally described by
horizon functions.

Precisely, let r ∈ N, d ∈ N≥2, and β,B > 0. Then we define

Kr ,β,d ,B :=
{
1K : K ⊂ [−1/2, 1/2]d such that

∀ x ∈ [−1/2, 1/2]d :

∃ fx ∈ HFβ,d ,B :

1K = fx on [−1/2, 1/2]d ∩ B2−r
‖·‖`∞ (x)

}
.

21 / 31

Approximation of sets with smooth boundary

Theorem (Petersen, V.; 2017)

There are c ′ > 0 and c = c(d , β, r ,B) > 0, such that for arbitrary
1K ∈ Kr ,β,d ,B and ε ∈ (0, 1), there exists a ReLU network ΦK

ε that

I satisfies ‖ΦK
ε − 1K‖L2([−1/2,1/2]d) ≤ ε,

I has at most c · ε−2(d−1)/β nonzero weights,

I has at most c ′ · log2(2 + β) · (1 + β/d) layers.

Comments

I Very smooth boundary =⇒ Good approximation with smaller
networks.

I These networks are smaller but deeper.

I Proof: Approximation of horizon functions + Partition of unity.

By taking linear combinations: Can approximate classifier functions
(piecewise constant functions).

22 / 31

Optimality

22 / 31

Optimality — Does it hold?
Previous part of the talk: Rates of approximation for certain function
classes using neural networks.

Can these rates be improved?

No optimality in full generality:

Theorem (Maiorov, Pinkus; 1999)

There exists an activation function %weird : R→ R that

I is analytic and strictly increasing,

I satisfies limx→−∞ %weird(x) = 0 and limx→∞ %weird(x) = 1,

such that for any d ∈ N, any f ∈ C ([0, 1]d) and any ε > 0, there is a

neural network Φf
ε with activation function %weird and two hidden

layers of dimensions 3d and 6d + 3 such that ‖f − Φf
ε‖L∞ ≤ ε.

With this activation function, networks of fixed size can approximate
every continuous function arbitrarily well.

23 / 31

Optimality

In order to obtain meaningful optimality results, we have to exclude
pathological examples like the activation function %weird.

 Introduce additional assumptions!

Options:

(A) Place restrictions on activation function (e.g. only consider ReLU),
thereby excluding pathological examples like %weird.
(VC dimension bounds)

(B) Place restrictions on the weights.
(Information theoretical bounds, entropy arguments)

(C) Use still other concepts like continuous N-widths.

24 / 31

Lower bounds using VC dimension arguments
A network architecture A determines

I The input dimension d = N0, and the number of layers L,
I the number of neurons N` on layer `,
I the possible weights (entries of A`, b`) which are allowed to be nonzero.

For an architecture A,
I NN (A) is the set of ReLU networks conform with A.
I W (A) is the maximal number of weights of networks in NN (A).

Theorem (Yarotsky; 2016)

Let d , n ∈ N. For a network architecture A with input dimension d , let

εA := sup
f∈Fn,d,1

inf
Φ∈NN (A)

‖f − Φ‖L∞L∞([−1/2,1/2]d).

Let p ≥ 0 and c1 > 0. There is c ′ = c ′(d , n, p, c1) > 0, such that if εA < 1/2,

and if A has at most c1 · lnp(1/εA) layers, then

W (A) ≥ c ′ · ε−d/nA
/

ln1+2p(1/εA).

The approximation is always with respect to the L∞ norm!
25 / 31

Another approach to lower bounds
I Approximation with L∞-norm not appropriate in our setting (piecewise

constant functions are discontinuous).
I It seems that the VC dimension arguments of Yarotsky do not generalize to

the L2 setting.

 Use a different notion of optimality.

Idea [Bölcskei, Grohs, Kutyniok, Petersen; 2017]: Assume that the weights of
the approximating networks can be encoded using at most K = K (ε) bits.

For % : R→ R, denote by NN %
M,K ,d the set of neural networks that

I have d-dimensional input and 1-dimensional output,
I use the activation function %,
I have at most M nonzero weights,
I where each weight can be encoded with K bits.

Idea for getting lower bounds:

Assume: Good approx. of class C ⊂ L2(Ω) with NN %
M,K ,d

 (Not too) lossy encoder/decoder for C with small code length

But: Such codecs must have a long code length!
26 / 31

Approximating networks yield codecs
Let C ⊂ L2(Ω).
I A codec of length ` for C is a pair (E`,D`) with

E` : C → {0, 1}`, D` : {0, 1}` → L2(Ω).

I A codec (E`,D`) is ε-accurate if

‖f − D`(E`f)‖L2 ≤ ε ∀ f ∈ C.

Lemma (Bölcskei, Grohs, Kutyniok, Petersen; 2017)

Let % be an activation function with %(0) = 0. There is a constant
C = C (d) ∈ N, and an injective encoding map

EM,K : NN %
M,K ,d → {0, 1}

[(K ,M), [(K ,M) :=C ·M · (K+dlog2 Me).

Therefore: If

∀ 1Λ ∈ Kr ,β,d ,B ∃ ΦΛ ∈ NN %
M,K ,d : ‖1Λ − ΦΛ‖L2 ≤ ε,

then Kr ,β,d ,B admits an ε-accurate codec of length [(K ,M).

27 / 31

Accurate codecs must be long

Using known results about the entropy numbers of

{f ∈ Cβ([0, 1]d) : ‖f ‖Cβ ≤ B}, equipped with ‖ · ‖L1 ,

and transferring these to the class Kr ,β,d ,B , one can show the following:

Lemma (Petersen, V.; 2017. Chandrasekara et al.; 2009)

Each ε-accurate codec for Kr ,β,d ,B has length ` & ε−2(d−1)/β, if
0 < ε� 1.

28 / 31

Lower bounds for networks with encodable weights

Fix % : R→ R with %(0) = 0 and C0 > 0. For ε > 0, let

Kε := dC0 · log2(1/ε)e.

Finally, for f ∈ L2([−1/2, 1/2]d) define

Mε(f) := min
{
M ∈ N : ∃ Φ ∈ NN %

M,Kε,d
s.t. ‖f − Φ‖L2 ≤ ε

}
.

Theorem (Petersen, V.; 2017)

For 0 < ε� 1, we have

sup
f ∈Kβ,d,B

sup
f ∈Kβ,d,B

Mε(f) & ε−2(d−1)/β
/

log2(1/ε).

Theorem (Petersen, V.; 2017)

There is a function f0 ∈ Kr ,β,d ,B and a null-sequence (εk)k with

Mεk (f0) & ε−2(d−1)/β
k

/
(log2(1/εk))2.

29 / 31

Optimality of depth

Theorem (Petersen, V.; 2017)

Let Ω ⊂ Rd be nonempty, open, bounded, and connected. Let
f ∈ C 3 (Ω) be nonlinear. Then there is a constant Cf > 0 satisfying

‖f − Φ‖Lp ≥ Cf · (M (Φ) + d)−2·L(Φ)

for all 1 ≤ p <∞ and each ReLU neural network Φ.

Comments:

I If (Φε)ε>0 satisfies ‖f − Φε‖Lp ≤ ε and M(Φε) . ε−θ, then for
0 < ε� 1, we have L(Φε) ≥ c/θ for an absolute constant c > 0.

I [Yarotsky; 2017] derived a similar result for L∞ approximation.

I For p = 2, [Safran and Shamir; 2016] obtained a similar result.

30 / 31

Conclusion

Motivated by the problem of approximating classifier functions, we
determined the optimal approximation rates of ReLU networks for

I Horizon functions,

I smooth functions,

I piecewise constant functions.

x1

x2

01

2
3

4
5

Also possible: Piecewise smooth functions.

A word on depth: Smoother functions allow better approximation rates,
but achieving these rates requires deeper networks!

31 / 31

Thank you!
References:

P. Petersen, F. Voigtlaender

Optimal approximation of piecewise smooth functions using deep ReLU neural networks.

arXiv:1709.05289

H. Bölcskei, P. Grohs, G. Kutyniok, P. Petersen

Optimal Approximation with Sparsely Connected Deep Neural Networks.

arXiv:1705.01714

D. Yarotsky

Error bounds for approximation with deep ReLU networks.

Neural Netw., 2017

M. Anthony, P.L. Bartlett

Neural Network Learning: Theoretical Foundations.

Cambridge University Press, 2009

G.F. Clements,

Entropies of several sets of real valued functions.

Pacific J. Math., 1963

M. Telgarsky,

Representation benefits of deep feedforward networks.

arXiv:1509.08101

I. Safran, O. Shamir

Depth-width tradeoffs in approximating natural functions with neural networks.

arXiv:1610.09887 31 / 31

Proof that accurate codecs must be long
Observation: If f1, . . . , f2N ∈ C satisfy ‖fi − fj‖L2 > 2ε, every ε-accurate codec

(E ,D) for C has length ` ≥ N.

Proof.
If ` < N, then |{0, 1}`| < 2N , so that E (fi) = E (fj) for certain i 6= j . Hence,

2ε < ‖fi − fj‖L2 ≤ ‖fi − D(E (fi))‖L2 + ‖D(E (fj))− fj‖L2 ≤ ε+ ε.

[Clements; 1963] estimated the entropy numbers of Fβ,d,1 equipped with the L1

metric. This yields the following:

Lemma
For 0 < ε� 1, there is N ≥ 2c·ε−(d−1)/β

and f1, . . . , fN ∈ Fβ,d−1,B with

‖fi − fj‖L1 ≥ 5ε for i 6= j .

Finally, for 0 < B � 1, we have ‖HFγ −HFθ‖L2 = ‖γ − θ‖1/2
L1 with

HFγ = 1x1≤γ(x2,...,xd) for γ ∈ Fβ,d−1,B .

For 0 < ε� 1, every ε-accurate codec for Kβ,d,B has length ` & ε−2(d−1)/β .

31 / 31

Proof idea for the optimality of depth

Theorem (Petersen, V.; 2017)

Let Ω ⊂ Rd be nonempty, open, bounded, and connected. Let
f ∈ C 3 (Ω) be nonlinear. Then there is a constant Cf > 0 satisfying

‖f − Φ‖Lp ≥ Cf · (M (Φ) + d)−2·L(Φ)

for all 1 ≤ p <∞ and each ReLU neural network Φ.

Proof idea:

I [Telgarsky; 2015] showed for a ReLU network Φ with L layers that
t 7→ Φ(tv + v0) is affine-linear with O(M(Φ)L) many “pieces”.

I We have ‖α · x2 − (βx + γ)‖Lp([a,b]) & |α| · (b − a)2+p−1
.

I A C 3 function with bounded f ′′′ is approximated to order (b − a)3

by its Taylor polynomial on [a, b].

I Thus, ‖f (x)− (βx + γ)‖Lp([a,b]) & |b − a|2+p−1
for 0 < b − a� 1.

I Using a Fubini argument, reduce to the one-dimensional case.
31 / 31

