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Neural Networks and what they can do for you

A neural network is determined by the following:

I Dimension of input layer: d = N0 ∈ N,

I Number of layers: L ∈ N,

I Activation function: % : R→ R,

I Affine-linear maps W` : RN`−1 → RN` , x 7→ A` x + b`, ` = 1, . . . , L.

The function Φ : Rd → RNL computed by the network is

Φ(x) = WL(%(WL−1(%(. . . %(W1(x)) . . . )))), x ∈ Rd .

Note: In the last layer, we do not apply %!

In the following: mainly consider ReLU activation function %(x) = x+.
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Neural Networks and what they can do for you
Deep Learning: Efficient training of large multi-layered neural networks:

I Very competitive in classification (and other) tasks
I DNN often yield better generalization than other methods
I Little theory explaining this success

Examples:

I Image classification
(ImageNet)

I Game intelligence (AlphaGo)

I Self driving cars
(Tesla Autopilot)
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Why does Deep Learning work?
Usual setting of deep learning:
I Unknown ground truth: Function F (e.g., image classifier).
I Only known: Samples (Xi ,F (Xi )).
I Using stochastic gradient descent, find network Φ that (more or

less) minimizes N∑
i=1

|Φ(Xi )− F (Xi )|2 .

Hope: Φ generalizes, i.e., Φ(X ) ≈ F (X ) also for X 6= Xi .

Why does this work so well? Three main aspects (Poggio et al.):

I Power of the architecture,
I Efficiency of stochastic gradient descent,
I Surprisingly good generalization.

Power of architecture: Given f from some class of functions.

1. Is there a network Φ that implements (or approximates) f ?
2. How complex does Φ need to be?

 Approximation properties of neural networks.
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Function classes of interest

A crucial task of deep learning is to learn classifiers, e.g., classification
of hand-written digits:

A model for these functions is:

f : RN×N → {0, 1, . . . , 9}.

These are piecewise constant functions.
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Function classes of interest

Example: A classifier function according to our model:
f : [−1/2, 1/2]2 → {0, 1, 2, 3, 4, 5}:

x1

x2

01

2
3

4

5

Note: In applications, the input dimensions are much larger.

5 / 31



A caveat

Our interpretation: A classifier is a function taking only finitely many
values.

Another interpretation: A classifier function is (an estimate for) the
conditional probability P(i | x) that input x belongs to class i .

Depending on the probability distribution, this can yield smooth functions
as a model for a good classifier.

Depending on the application, both interpretations can be appropriate.
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Deep versus shallow networks

A network is deep if it has many layers.

Observation: In applications, deep networks perform much better than
shallow networks.

Approximation theory:

I Do deep networks provide provably better approximations than
shallow networks?

I What about our specific class of classifier functions?
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Complexity and closure properties

of the class of ReLU networks

7 / 31



Complexity of neural networks
The affine linear mapping W` is defined by a matrix A` ∈ RN`×N`−1 and

a translation b` ∈ RN` via W`(x) = A` x + b`.

The number of weights of a network Φ is

M(Φ) =
∑
j≤L

(‖Aj‖`0 + ‖bj‖`0).

This is our notion of the complexity of a network.
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The calculus of ReLU networks, Slide I
Producing identity: Since x = %(x)− %(−x), we can reproduce the
identity with a ReLU network Φid : Rd → Rd having L layers and
O(L · d) weights.

x
x+

x-

x+ x+

x- x-

x+x+x+ x++

x- x-x

x...
Composition: Let Φ1 : Rd → Rd ′ ,Φ2 : Rd ′ → Rd ′′ be two networks
with L1 and L2 layers and M1,M2 weights. Then Φ1 ◦ Φ2 can be realized
by a ReLU network with L1 + L2 layers and O(M1 + M2 + d ′) weights.

Increasing the depth: If Φ1 : Rd → Rd ′ has L1 layers and M1 weights,
then, for every L2 > L1 there is a network Φ2 with L2 layers and
M1 +O((L2 − L1) · d ′) weights with Φ1(x) = Φ2(x) for all x ∈ Rd .
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The calculus of ReLU networks, Slide II
Cartesian product of two networks: If Φ1 : Rd → Rd ′ has L1 layers
and M1 weights, and Φ2 : Rd → Rd ′′ has L2 layers and M2 weights, then
there exists Φ3 : Rd → Rd ′+d ′′ with max{L1, L2} layers and
M1 + M2 +O ((d ′ + d ′′) · |L1 − L2|) weights such that

Φ3(x) = (Φ1(x),Φ2(x)) ∀ x ∈ Rd .

 The class of ReLU networks is closed under linear combinations,
and the complexity of the linear combination can be controlled. 10 / 31



Approximation with neural
networks
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Approximation with neural networks is easy

We have the universal approximation theorem:

Theorem (Cybenko; 1989, Hornik; 1991, Pinkus; 1999)

Let K ⊂ Rd compact, f : K → R continuous, % : R→ R continuous and
not a polynomial.

For each ε > 0, there exist N ∈ N, ak , bk ∈ R,wk ∈ Rd :∥∥∥∥∥f −
N∑

k=1

ak · %(〈wk , •〉 − bk)

∥∥∥∥∥
L∞

≤ ε.

 Neural networks with two layers can approximate any continuous
function on a compact set arbitrarily well.
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Approximation with neural networks is easy — Or is it?!

Universal approximation theorem:
Every continuous function can be approximated up to an error of ε > 0
using a two-layer neural network with N neurons.

 No information on the connection between ε and N!

Goal for today:

Derive upper and lower bounds on the complexity of ReLU networks for
approximating classifier functions.
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Classifier functions
Model: A classifier function of regularity β > 0 is of the form

f =
n∑

i=1

ai · 1Bi
,

where ai ∈ R and Bi ⊂ Rd with ∂Bi ∈ Cβ for i ∈ {1, . . . , n}.

Note: Class of ReLU networks of a certain complexity (up to constant
factors) closed under linear combinations.

=⇒ Need only study approximation of f = 1B .
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Roadmap for approximation
To approximate classifier functions, we proceed in four steps:

1 Jumps along straight lines:

2 Smooth functions:

3 Horizon functions:

4 Classifier functions:
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Jumps along straight lines

Lemma (Petersen, V.; 2017)

Let H := 1[0,∞)×Rd−1 . For every ε > 0 there exists a ReLU network ΦH
ε ,

with two layers, and five weights, such that

‖H − ΦH
ε ‖L2([− 1

2
, 1

2
]d ) ≤ ε.

Furthermore, |H(x)− ΦH
ε (x)| ≤ 10≤x1≤ε2 .

Construction: ΦH
ε (x) = %(x1/ε

2)− %(x1/ε
2 − 1).
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Approximation of smooth functions — The function class

For β,B > 0, let

Fβ,d ,B :=
{
f ∈ Cn([−1/2, 1/2]d) : ‖f ‖Cβ ≤ B <∞

}
,

where for β = n + σ, n ∈ N0, σ ∈ (0, 1]

‖f ‖Cβ := max

{
max
|α|≤n

‖∂αf ‖sup, max
|α|=n

sup
x 6=y

|∂αf (x)− ∂αf (y)|
|x − y |σ

}
.

Note: F1,d ,B * C 1!
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Approximation of smooth functions — Existing results

Theorem (Yarotsky; 2016)

For any f ∈ Fn,d ,1 and ε ∈ (0, 1), there is a ReLU network Φf
ε that

I satisfies ‖f − Φf
ε‖L∞ ≤ ε,

I has at most c · ε−d/n · (log2(1/ε) + 1) nonzero weights and neurons,

I has depth at most c · (log2(1/ε) + 1),

with c = c(d , n).

Comments:

I The error is measured with respect to the L∞ norm.

I The depth of Φf
ε depends on ε.

Proof:

1 Implement (approximate) multiplication.

2 Implement (approximate) Taylor polynomials and part. of unity.

The approximate multiplication needs log2(1/ε) layers.
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Approximation of smooth functions — L2-approximation

Theorem (Petersen, V.; 2017)

There are c ′ > 0 and c = c(d , β,B) > 0, such that for any function
f ∈ Fβ,d ,B and any ε ∈ (0, 1/2), there is a ReLU network Φf

ε that

I satisfies ‖Φf
ε − f ‖L2([−1/2,1/2]d ) < ε,

I has at most c · ε−d/β nonzero weights,

I has at most c ′ · (1 + d−1β) · log2(2 + β) layers.

Comments:

I Depth of Φf
ε independent of ε; it only depends on β, d .

I Proof:

I Again: Taylor polynomials and partition of unity,

I But: Use multiplication operator with depth independent of ε.
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Approximation of Horizon functions — The function class

Let d ∈ N≥2, and β,B > 0. The class of horizon functions with
parameters β, d ,B is

HFβ,d ,B :=
{
1xi≥γ(x1,...,x̂i ,...,xd ) : γ ∈ Fβ,d−1,B and i ∈ {1, . . . , d}

}
=
{
f ◦ T : f (x) = H(x1 − γ(x2, . . . , xd), x2, . . . , xd),

γ ∈ Fβ,d−1,B ,T ∈ Perm(Rd)
}

⊂ L∞
(
[−1/2, 1/2]d

)
,

where H := 1[0,∞)×Rd−1 is the Heaviside function.
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Approximation of horizon functions — The theorem

Lemma (Petersen, V.; 2017)

There are c ′ > 0 and c = c(d , β,B) > 0, such that for any f ∈ HFβ,d ,B
and any ε ∈ (0, 1/2), there is a ReLU network Φf

ε that

I satisfies ‖Φf
ε − f ‖L2([−1/2,1/2]d ) < ε,

I has at most c · ε−2(d−1)/β nonzero weights,

I has at most c ′ · (1 + d−1β) · log2(β) layers.

Comments:

I The necessary depth depends on d , β, but not on ε.

I The size of Φf
ε approximating f ∈ HFβ,d ,B is ε−2(d−1)/β , compared

to ε−d/β for f ∈ Fβ,d ,B .
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Sets with smooth boundary
Sets with smooth boundaries are those that are locally described by
horizon functions.

Precisely, let r ∈ N, d ∈ N≥2, and β,B > 0. Then we define

Kr ,β,d ,B :=
{
1K : K ⊂ [−1/2, 1/2]d such that

∀ x ∈ [−1/2, 1/2]d :

∃ fx ∈ HFβ,d ,B :

1K = fx on [−1/2, 1/2]d ∩ B2−r
‖·‖`∞ (x)

}
.
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Approximation of sets with smooth boundary

Theorem (Petersen, V.; 2017)

There are c ′ > 0 and c = c(d , β, r ,B) > 0, such that for arbitrary
1K ∈ Kr ,β,d ,B and ε ∈ (0, 1), there exists a ReLU network ΦK

ε that

I satisfies ‖ΦK
ε − 1K‖L2([−1/2,1/2]d ) ≤ ε,

I has at most c · ε−2(d−1)/β nonzero weights,

I has at most c ′ · log2(2 + β) · (1 + β/d) layers.

Comments

I Very smooth boundary =⇒ Good approximation with smaller
networks.

I These networks are smaller but deeper.

I Proof: Approximation of horizon functions + Partition of unity.

By taking linear combinations: Can approximate classifier functions
(piecewise constant functions).
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Optimality
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Optimality — Does it hold?
Previous part of the talk: Rates of approximation for certain function
classes using neural networks.

Can these rates be improved?

No optimality in full generality:

Theorem (Maiorov, Pinkus; 1999)

There exists an activation function %weird : R→ R that

I is analytic and strictly increasing,

I satisfies limx→−∞ %weird(x) = 0 and limx→∞ %weird(x) = 1,

such that for any d ∈ N, any f ∈ C ([0, 1]d) and any ε > 0, there is a

neural network Φf
ε with activation function %weird and two hidden

layers of dimensions 3d and 6d + 3 such that ‖f − Φf
ε‖L∞ ≤ ε.

With this activation function, networks of fixed size can approximate
every continuous function arbitrarily well.
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Optimality

In order to obtain meaningful optimality results, we have to exclude
pathological examples like the activation function %weird.

 Introduce additional assumptions!

Options:

(A) Place restrictions on activation function (e.g. only consider ReLU),
thereby excluding pathological examples like %weird.
( VC dimension bounds)

(B) Place restrictions on the weights.
( Information theoretical bounds, entropy arguments)

(C) Use still other concepts like continuous N-widths.
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Lower bounds using VC dimension arguments
A network architecture A determines

I The input dimension d = N0, and the number of layers L,
I the number of neurons N` on layer `,
I the possible weights (entries of A`, b`) which are allowed to be nonzero.

For an architecture A,
I NN (A) is the set of ReLU networks conform with A.
I W (A) is the maximal number of weights of networks in NN (A).

Theorem (Yarotsky; 2016)

Let d , n ∈ N. For a network architecture A with input dimension d, let

εA := sup
f∈Fn,d,1

inf
Φ∈NN (A)

‖f − Φ‖L∞L∞([−1/2,1/2]d ).

Let p ≥ 0 and c1 > 0. There is c ′ = c ′(d , n, p, c1) > 0, such that if εA < 1/2,

and if A has at most c1 · lnp(1/εA) layers, then

W (A) ≥ c ′ · ε−d/nA
/

ln1+2p(1/εA).

The approximation is always with respect to the L∞ norm!
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Another approach to lower bounds
I Approximation with L∞-norm not appropriate in our setting (piecewise

constant functions are discontinuous).
I It seems that the VC dimension arguments of Yarotsky do not generalize to

the L2 setting.

 Use a different notion of optimality.

Idea [Bölcskei, Grohs, Kutyniok, Petersen; 2017]: Assume that the weights of
the approximating networks can be encoded using at most K = K (ε) bits.

For % : R→ R, denote by NN %
M,K ,d the set of neural networks that

I have d-dimensional input and 1-dimensional output,
I use the activation function %,
I have at most M nonzero weights,
I where each weight can be encoded with K bits.

Idea for getting lower bounds:

Assume: Good approx. of class C ⊂ L2(Ω) with NN %
M,K ,d

 (Not too) lossy encoder/decoder for C with small code length

But: Such codecs must have a long code length!
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Approximating networks yield codecs
Let C ⊂ L2(Ω).
I A codec of length ` for C is a pair (E`,D`) with

E` : C → {0, 1}`, D` : {0, 1}` → L2(Ω).

I A codec (E`,D`) is ε-accurate if

‖f − D`(E`f )‖L2 ≤ ε ∀ f ∈ C.

Lemma (Bölcskei, Grohs, Kutyniok, Petersen; 2017)

Let % be an activation function with %(0) = 0. There is a constant
C = C (d) ∈ N, and an injective encoding map

EM,K : NN %
M,K ,d → {0, 1}

[(K ,M), [(K ,M) :=C ·M · (K+dlog2 Me).

Therefore: If

∀ 1Λ ∈ Kr ,β,d ,B ∃ ΦΛ ∈ NN %
M,K ,d : ‖1Λ − ΦΛ‖L2 ≤ ε,

then Kr ,β,d ,B admits an ε-accurate codec of length [(K ,M).
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Accurate codecs must be long

Using known results about the entropy numbers of

{f ∈ Cβ([0, 1]d) : ‖f ‖Cβ ≤ B}, equipped with ‖ · ‖L1 ,

and transferring these to the class Kr ,β,d ,B , one can show the following:

Lemma (Petersen, V.; 2017. Chandrasekara et al.; 2009)

Each ε-accurate codec for Kr ,β,d ,B has length ` & ε−2(d−1)/β, if
0 < ε� 1.
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Lower bounds for networks with encodable weights

Fix % : R→ R with %(0) = 0 and C0 > 0. For ε > 0, let

Kε := dC0 · log2(1/ε)e.

Finally, for f ∈ L2([−1/2, 1/2]d) define

Mε(f ) := min
{
M ∈ N : ∃ Φ ∈ NN %

M,Kε,d
s.t. ‖f − Φ‖L2 ≤ ε

}
.

Theorem (Petersen, V.; 2017)

For 0 < ε� 1, we have

sup
f ∈Kβ,d,B

sup
f ∈Kβ,d,B

Mε(f ) & ε−2(d−1)/β
/

log2(1/ε).

Theorem (Petersen, V.; 2017)

There is a function f0 ∈ Kr ,β,d ,B and a null-sequence (εk)k with

Mεk (f0) & ε−2(d−1)/β
k

/
(log2(1/εk))2.
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Optimality of depth

Theorem (Petersen, V.; 2017)

Let Ω ⊂ Rd be nonempty, open, bounded, and connected. Let
f ∈ C 3 (Ω) be nonlinear. Then there is a constant Cf > 0 satisfying

‖f − Φ‖Lp ≥ Cf · (M (Φ) + d)−2·L(Φ)

for all 1 ≤ p <∞ and each ReLU neural network Φ.

Comments:

I If (Φε)ε>0 satisfies ‖f − Φε‖Lp ≤ ε and M(Φε) . ε−θ, then for
0 < ε� 1, we have L(Φε) ≥ c/θ for an absolute constant c > 0.

I [Yarotsky; 2017] derived a similar result for L∞ approximation.

I For p = 2, [Safran and Shamir; 2016] obtained a similar result.
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Conclusion

Motivated by the problem of approximating classifier functions, we
determined the optimal approximation rates of ReLU networks for

I Horizon functions,

I smooth functions,

I piecewise constant functions.

x1

x2
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5

Also possible: Piecewise smooth functions.

A word on depth: Smoother functions allow better approximation rates,
but achieving these rates requires deeper networks!
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Thank you!
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Proof that accurate codecs must be long
Observation: If f1, . . . , f2N ∈ C satisfy ‖fi − fj‖L2 > 2ε, every ε-accurate codec

(E ,D) for C has length ` ≥ N.

Proof.
If ` < N, then |{0, 1}`| < 2N , so that E (fi ) = E (fj) for certain i 6= j . Hence,

2ε < ‖fi − fj‖L2 ≤ ‖fi − D(E (fi ))‖L2 + ‖D(E (fj))− fj‖L2 ≤ ε+ ε.

[Clements; 1963] estimated the entropy numbers of Fβ,d,1 equipped with the L1

metric. This yields the following:

Lemma
For 0 < ε� 1, there is N ≥ 2c·ε−(d−1)/β

and f1, . . . , fN ∈ Fβ,d−1,B with

‖fi − fj‖L1 ≥ 5ε for i 6= j .

Finally, for 0 < B � 1, we have ‖HFγ −HFθ‖L2 = ‖γ − θ‖1/2
L1 with

HFγ = 1x1≤γ(x2,...,xd ) for γ ∈ Fβ,d−1,B .

For 0 < ε� 1, every ε-accurate codec for Kβ,d,B has length ` & ε−2(d−1)/β .
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Proof idea for the optimality of depth

Theorem (Petersen, V.; 2017)

Let Ω ⊂ Rd be nonempty, open, bounded, and connected. Let
f ∈ C 3 (Ω) be nonlinear. Then there is a constant Cf > 0 satisfying

‖f − Φ‖Lp ≥ Cf · (M (Φ) + d)−2·L(Φ)

for all 1 ≤ p <∞ and each ReLU neural network Φ.

Proof idea:

I [Telgarsky; 2015] showed for a ReLU network Φ with L layers that
t 7→ Φ(tv + v0) is affine-linear with O(M(Φ)L) many “pieces”.

I We have ‖α · x2 − (βx + γ)‖Lp([a,b]) & |α| · (b − a)2+p−1
.

I A C 3 function with bounded f ′′′ is approximated to order (b − a)3

by its Taylor polynomial on [a, b].

I Thus, ‖f (x)− (βx + γ)‖Lp([a,b]) & |b − a|2+p−1
for 0 < b − a� 1.

I Using a Fubini argument, reduce to the one-dimensional case.
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